郵箱登錄 | 所務辦公 | 收藏本站 | English | 中國科學院
 
首頁 計算所概況 新聞動態 科研成果 研究隊伍 國際交流 技術轉移 研究生教育 學術出版物 黨群園地 科學傳播 信息公開
國際交流
學術活動
交流動態
現在位置:首頁 > 國際交流 > 學術活動
5,000X Model Compression in DNNs; But, is it Truly Desirable?
2019-06-17 | 【 【打印】【關閉】

  報告時間: 2019年6月20日(周四) 下午 2:30—4:00

  報告地點: 計算所 446室

  主 講 人 :Prof. Yanzhi Wang,ECE at Northeastern University

  報告摘要:

  Hardware implementation of deep neural networks (DNNs) with emphasis on performance and energy efficiency has been the focus of extensive ongoing investigations. When large DNNs are mapped to hardware as an inference engine, the resulting hardware suffers from significant performance and energy overheads. To overcome this hurdle, we develop ADMM-NN, an algorithm-hardware co-optimization framework for greatly reducing DNN computation and storage requirements by incorporating Alternating Direction Method of Multipliers (ADMM) and utilizing all redundancy sources in DNN. Our preliminary results show that ADMM-NN can achieve the highest degree of model compression on representative DNNs. For example, we can achieve 348X, 63X, 34X, and 17X weight reduction on LeNet-5, AlexNet, VGGNet, and ResNet-50, respectively, with (almost) no accuracy loss. We achieve a maximum of 4,438X weight data storage reduction when combining weight pruning and weight quantization, while maintaining accuracy.

  主講人簡介:

  Yanzhi Wang is currently an assistant professor in the Department of Electrical and Computer Engineering at Northeastern University. He has received his Ph.D. Degree in Computer Engineering from University of Southern California (USC) in 2014, and his B.S. Degree with Distinction in Electronic Engineering from Tsinghua University in 2009. Dr. Wang's current research interests are the energy-efficient and high-performance implementations of deep learning and artificial intelligence systems, as well as the integration of security protection in deep learning systems. His works have been published in top venues in conferences and journals (e.g. ASPLOS, ISCA, MICRO, HPCA, ISSCC, AAAI, ICML, CVPR, ICLR, IJCAI, ECCV, ACM MM, CCS, VLDB, FPGA, DAC, ICCAD, DATE, LCTES, INFOCOM, ICDCS, Nature SP, etc.), and have been cited for over 4,200 times according to Google Scholar. He has received four Best Paper Awards, has another seven Best Paper Nominations and two Popular Papers in IEEE TCAD. His group is sponsored by the NSF, DARPA, IARPA, AFRL/AFOSR, SRC, and industry sources.

 
網站地圖 | 聯系我們 | 意見反饋 | 所長信箱
 
京ICP備05002829號 京公網安備1101080060號
华东15选5中奖规则